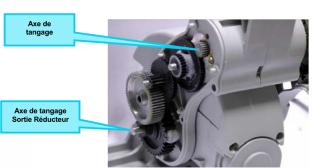
Fonction convertir (MCC): Portescap 22NT82213P


Specification		unit	value	toleran
Mea	sured values			To a sold
1	Measuring voltage	V	18	-
2	No-load speed	rpm	8300	±10%
3	No-load current	mA	75	max
4	Starting voltage	V		max
5	Terminal resistance	Ohm	5.4	±10%
Reco	ommended values			
10	Continuous current (at 22°C)	Α	0.92	max
11	Continuous torque	mNm	16.1	max
12	Angular acceleration	10 ³ rad/s ²	181	max
13	Ambient working temperature range	°C	-30°C to 65°C	typical
14	Rated coil temperature	°C	155	max
Intri	nsic parameters			1-3-5
20	Back-EMF constant	V/1000 rpm	2.03	±8%
21	Torque constant	mNm/A	19.4	±8%
22	Motor regulation R/k2	10 ³ /Nms	13.71	typical
23	Rotor inductance (@1kHz)	mH	0.6	typical
24	Mechanical time constant	ms	4.5	-
25	Thermal resistance rotor-body	°C/W	6	typical
26	Thermal resistance body-ambient	°C/W	22	typical
27	Thermal time constant – rotor	S	9	typical
28	Thermal time constant –stator	S	550	typical
29	Rotor Inertia	Kgm ² 10 ⁻⁷	4.8	typical
30	Stall torque	mNm	68	±8%

Fonction Transmettre

La photo ci-dessous montre le train d'engrenage pour l'axe de tangage :

Les rapports de réduction sont donnés ci-dessous roulis (Roll) et tangage (pitch):

Fonction Acquérir (Position)

Les mesures de positions sont effectuées par 4 capteurs magnétiques MRE AS5045. Pour chaque axe (Pitch et Roll), il y a un capteur sur l'axe du moteur et un capteur sur l'axe en sortie du réducteur.

12 Bit Programmable Magnetic Rotary Encoder

Ce circuit est un codeur rotatif magnétique sans contact. Il combine un DSP et des capteurs à effet Hall intégrés.

Pour mesurer un angle, un aimant circulaire centré au dessus du composant est nécessaire.

La position absolue de l'aimant mesurée avec une résolution de 0,0879° (12 bits, 360°/2¹²).

L'information peut être transmise sous forme analogique (signal PWM dont le rapport cyclique est proportionnel à l'angle) ou sous forme numérique (flot série de bits).

