D'après Pierre Rigat Lycée Vauvenargues Aix-en-Provence, revu par J-C Rolin Lycée G. Eiffel Dijon

IDENTIFICATION A UN SYSTEME LINEAIRE DU PREMIER ORDRE PASSE BAS

1- <u>Modèle du système linéaire du type passe-bas</u> du premier ordre :

Figure 2. Equation différentielle :
$$s(t) + \tau \cdot \frac{ds}{dt} = T_0 \cdot e(t)$$

> Transmittance fréquentielle ou isochrone :

$$\underline{T}(j\omega) = \frac{\underline{S}(j\omega)}{\underline{E}(j\omega)} = \frac{T_0}{1 + j\frac{\omega}{\omega_C}} \quad avec \quad \omega_C = \frac{1}{\tau}$$

> Transmittance dans le domaine de Laplace ou isomorphe : $T(p) = \frac{S(p)}{E(p)} = \frac{T_0}{1 + \tau p}$

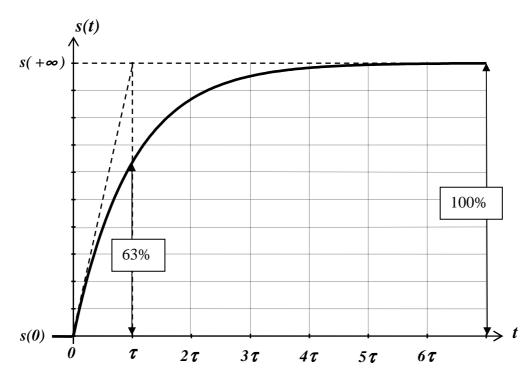
Avec T_0 la transmittance statique et τ la constante de temps du système du 1^{er} ordre, ou ω_C la pulsation de coupure à -3 dB.

2- Réponse indicielle du système linéaire du type passe-bas du premier ordre :

Grandeur de sollicitation du système :

 \triangleright échelon de hauteur E (par rapport à son état de repos), appliqué à l'instant initial t=0.

Allure de la réponse du système :



Au bout du temps τ , la variation de la sortie est de 63% de sa variation totale

Evolution de la réponse indicielle en fonction du temps :

temps	τ	2 au	3τ	4τ	5τ
$\frac{s(t) - s(0)}{s(+\infty) - s(0)}$	0,632	0,865	0,95	0,982	0,993

Caractéristiques principales de la réponse indicielle :

- > Réponse croissante sans dépassement de la valeur finale.
- ➤ Tangente à l'origine de coefficient directeur non nul.

3- Méthode d'identification :

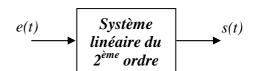
Détermination de la transmittance statique :

$$T_0 = \frac{s(+\infty) - s(0)}{E}$$

- > Détermination de la constante de temps :
 - 1) Abscisse du point d'intersection entre la tangente à l'origine de la réponse et l'asymptote de la réponse lorsque $t \rightarrow + \infty$.
 - 2) Au bout du temps τ , la variation de la sortie est de 63% de sa variation totale

IDENTIFICATION A UN SYSTEME LINEAIRE DU SECOND ORDRE PASSE BAS

1- <u>Modèle du système linéaire du type passe-bas</u> du second ordre :



$$Transmittance\ fr\'equentielle\ ou\ isochrone: \qquad \underline{\underline{T}}(j\omega) = \frac{\underline{\underline{S}}(j\omega)}{\underline{\underline{E}}(j\omega)} = \frac{T_0}{1 + 2.m.j\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$

> Transmittance dans le domaine de Laplace ou isomorphe :

$$T(p) = \frac{S(p)}{E(p)} = \frac{T_0}{1 + \frac{2 \cdot m}{\omega_0} \cdot p + \left(\frac{p}{\omega_0}\right)^2}$$

avec T_0 la transmittance statique et m le coefficient d'amortissement, et ω_0 la pulsation propre du système du 2^{eme} ordre. Système stable si m > 0.

2- <u>Réponse indicielle du système linéaire du type passe-bas du second ordre sur amorti (réponse apériodique :</u>

Dans le cas du système du second ordre sur amorti ($m \ge 1$), la transmittance de Laplace ou isomorphe peut s'écrire : $T(p) = \frac{T_0}{\left(1 + \tau \cdot p\right) \cdot \left(1 + \alpha \cdot \tau \cdot p\right)}$

L'identification est faîte par rapport à cette formulation.

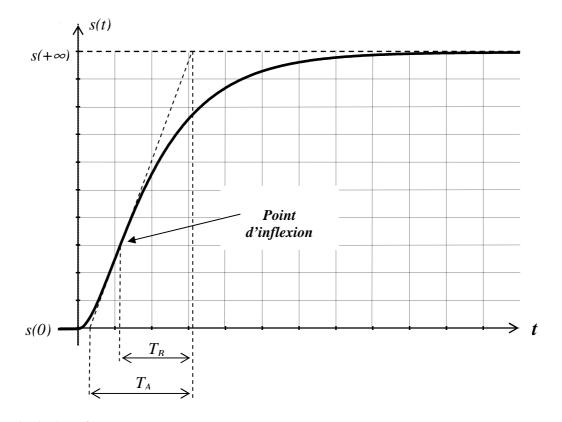
Grandeur de sollicitation du système :

 \blacktriangleright échelon de hauteur E (par rapport à son état de repos), appliqué à l'instant initial t=0.

Allure de la réponse du système :

Caractéristiques principales de la réponse indicielle :

- > Tangente à l'origine de coefficient directeur nul.
- \triangleright Réponse croissante sans dépassement de la valeur finale pour le système du 2^{eme} ordre sur amorti $(m \ge 1)$.

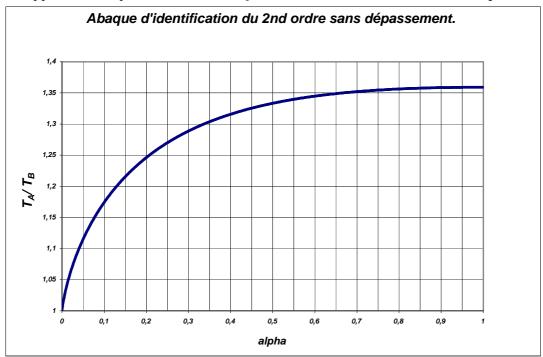


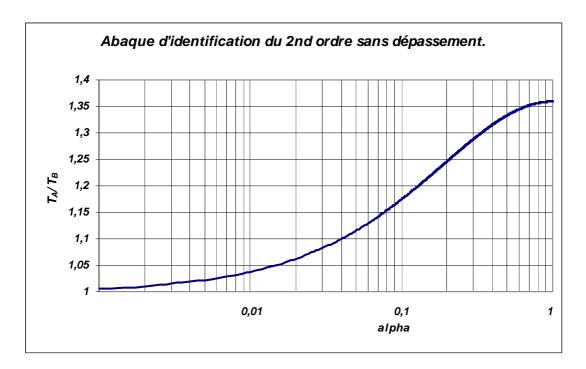
Méthode d'identification :

- \triangleright *Détermination du facteur \alpha:*

La tangente au point d'inflexion de la courbe, permet de déterminer les temps T_A et T_B comme cela est indiqué ci-dessus.

Le rapport T_A/T_B permet d'obtenir le facteur α en utilisant l'une des 2 abaques ci-dessous :





Pétermination de la constante de temps τ :

La mesure du temps T_B et la détermination du facteur α , permet d'obtenir la constante de temps τ par la relation : $\tau = \frac{T_B}{1+\alpha}$.

On retrouve alors le coefficient d'amortissement m par la relation : $m = \frac{1+\alpha}{2\sqrt{\alpha}}$

et la pulsation propre ω_0 par la relation : $\omega_0 = \frac{1}{\tau \sqrt{\alpha}}$

3- Réponse indicielle du système linéaire du type passe-bas du second ordre sous amorti :

Grandeur de sollicitation du système :

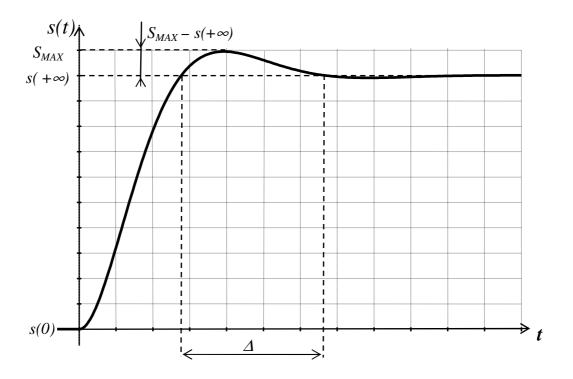
 \triangleright échelon de hauteur E (par rapport à son état de repos), appliqué à l'instant initial t=0.

Allure de la réponse du système :

Caractéristiques principales de la réponse indicielle :

- Tangente à l'origine de coefficient directeur nul.
- \triangleright Réponse croissante avec dépassement de la valeur finale pour le système du 2^{eme} ordre sous amorti (m < 1): réponse oscillatoire amortie.

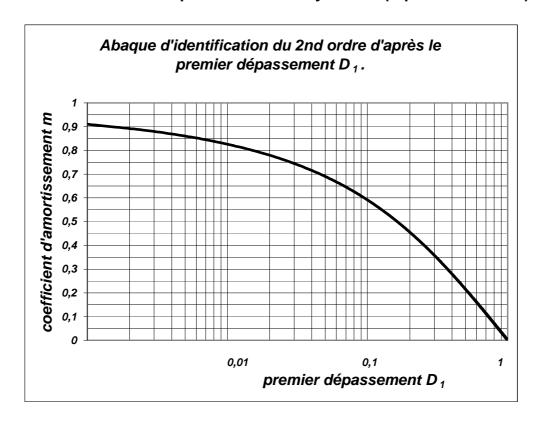
Méthode d'identification à l'aide du 1^{er} dépassement :



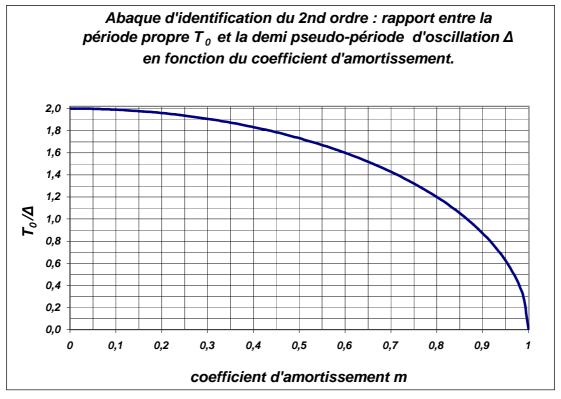
➤ Détermination de la transmittance statique : T

$$T_0 = \frac{s(+\infty) - s(0)}{E}$$

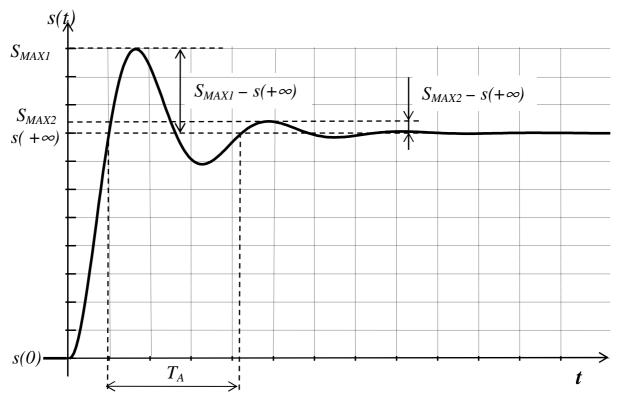
► Détermination du coefficient d'amortissement m à partir de la valeur du premier dépassement $D_1 = \frac{S_{MAX} - s(+\infty)}{s(+\infty) - s(0)}$ en utilisant l'abaque ci-dessous :



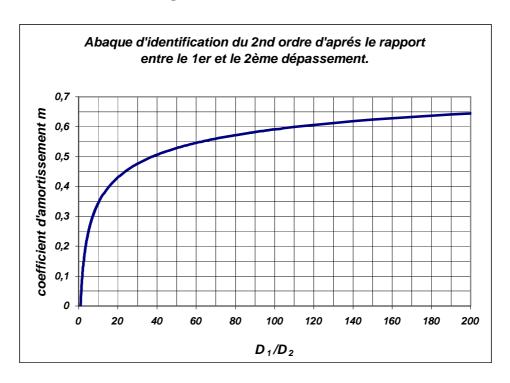
 \triangleright Détermination de la pulsation propre ω_0 à partir de la valeur de la demi pseudo période Δ d'oscillation en utilisant l'abaque ci-dessous :



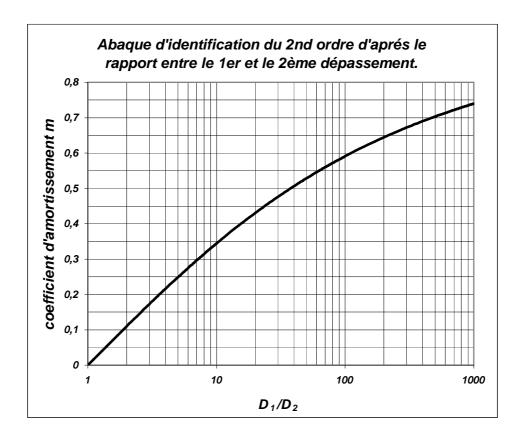
Méthode d'identification à l'aide des 2 premiers dépassements :



- > Détermination de la transmittance statique :
- $T_0 = \frac{s(+\infty) s(0)}{E}$



Page 7 sur 8



 \triangleright Détermination de la pulsation propre ω_0 à partir de la valeur de la pseudo période T_A d'oscillation et en utilisant l'abaque ci-dessous :

