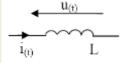
INDUCTANCE

Relation électrique


Un circuit électrique parcouru par un courant i(t) est la source d'un champ magnétique dont le flux à travers la section est noté $\Phi(t)$. L'inductance est le coefficient entre ses deux grandeurs dans les situations où la relation est proportionnelle.

 $u_{(t)} = L.\frac{di}{dt}$

$$\phi_{(t)} = L.i_{(t)}$$
 L inductance en Henry (H)

Et par la loi de Faraday $(u_{(t)} = \frac{d\phi}{dt})$, on obtient

Symbole

Critères de choix

(H) Inductance

Imax (A) Courant maximum que peut supporter le composant sans détérioration

Puissance

Puissance active: Une inductance ne dissipe aucune puissance active. Par conséquence, dans un comportement périodique, la valeur moyenne de la tension aux bornes d'une self est nulle, $< u_{L(t)} > = 0$.

Puissance réactive Q en VAR : en sinusoïdal, une inductance « consomme » du réactif $Q_L = L.\omega I_{eff}^2$

Energie

Energie stockée sous forme électromagnétique dans une inductance quand le courant $i_{\scriptscriptstyle(t)}=I$

$$W = \frac{1}{2} . L. I^2$$

Une inductance s'oppose à toute variation brutale du courant qui la traverse, elle se comporte en source de courant pour les phénomènes transitoires.

Représentations

Espace de calcul	relation	
Temporel	$u_{(t)} = L.\frac{di}{dt}$	
		Impédance
Complexe	$\underline{U} = j.L.\omega.\underline{I}$	$\underline{\underline{Z} = j.L.\omega}$ Imaginaire pur $Arg_{(z)} = +\frac{\pi}{2}$
Laplace	$U_{(p)} = L.p.I_{(p)}$	$Z_{(p)} = p.L$