

Technique de calcul des circuits linéaires

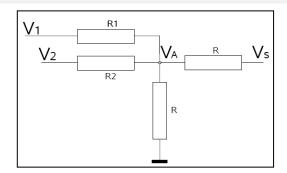
Par application de la loi de courant, en un point désigné A,

On écrit
$$\sum_{i} \frac{V_{i} - V_{A}}{R_{i}} = 0$$

ou en sinusoïdal $\sum_{i} \frac{\underline{V}_{i} - \underline{V}_{A}}{\underline{Z}_{i}} = 0$

V_A potentiel au point A

V_i potentiel à l'extrémité du dipôle de la branche i


Z_i impédance (ou la résistance) du dipôle de la branche i

Exemple:

On cherche une relation entre V₁, V₂, V_A et V_s

Si on imagine tous les courants convergeant par convention au point A, la relation s'écrit :

$$\frac{V_1 - V_A}{R_1} + \frac{V_2 - V_A}{R_2} + \frac{0 - V_A}{R} + \frac{V_s - V_A}{R} = 0$$

- On remarque que la convention choisie sur le signe des courants permet de retrouver systématiquement le potentiel V_A du point A à droite dans les différents termes,
- On prendra soin de toujours écrire le terme d'une branche qui part à la masse avec deux potentiels, ici (0- V_A),
- Il y a autant de termes dans la relation que de branches, et n+1 potentiels à exprimer,
- Le premier travail sur un schéma consiste à repérer et noter les potentiels de chaque branche,
- Sur les schémas proposés, sont souvent fléchées les tensions (ou différences de potentiel): on préférera redessiner le schéma uniquement avec des potentiels (qui sont tous référencés à la même masse),
- On remarquera que ne pas nommer ni signer les courants sur le schéma permet de renverser la convention de courant au nœud suivant. (Par exemple au point S pour chercher une relation V_A, V_S, V_i si d'autres branches existent après V_S).