SYSTEME DU PREMIER ORDRE

1 - Définition

Le comportement d'un système du premier ordre est régi par une équation différentielle du 1er degré à coefficients constants :

$$T\frac{ds(t)}{dt} + s(t) = Ke(t)$$

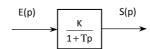
Dans cette équation :

- K est appelé gain statique, il traduit la proportionnalité de la sortie s avec l'entrée e en régime permanent statique.
- T est appelé constante de temps du système.

Si on suppose s(0) = 0, alors on peut représenter un système du premier ordre par sa fonction de transfert H(p):

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + Tp}$$

On peut donc représenter un système du $\mathbf{1}^{\text{er}}$ ordre par le schéma suivant :



2 - Étude temporelle

2.1 – Réponse à un échelon constant ou réponse indicielle

L'entrée e est un échelon constant d'amplitude E₀.

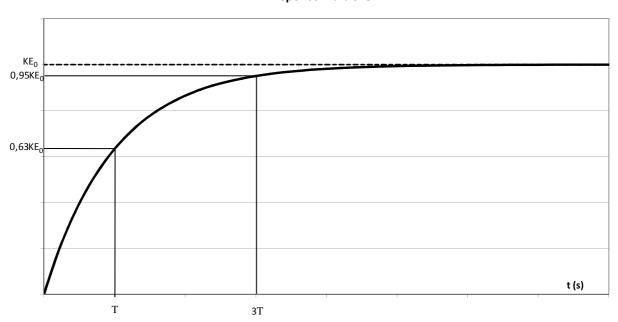
a. expression de S(p)

$$S(p) = \frac{KE_0}{p(1+Tp)}$$

b. transformation inverse

$$s(t) = KE_0 \left(1 - e^{-\frac{t}{T}} \right)$$

Réponse indicielle



• Valeur finale du régime permanent

C'est la valeur atteinte par la réponse lorsque t tend vers l'infini, on peut la noter s_∞ .

$$s_{\infty} = \lim_{t \to +\infty} s(t) = \lim_{p \to 0} pS(p) = KE_0$$

• Pente à l'origine

$$\dot{s}(0) = \lim_{t \to 0} \dot{s}(t) = \lim_{p \to +\infty} p(pS(p)) = \frac{KE_0}{T}$$

• Temps de réponse à 5% (t_{rs%}) ou temps d'établissement

Pour qualifier la durée du régime transitoire, on introduit le temps de réponse à 5%, $t_{r5\%}$. Ce temps de réponse est le temps nécessaire pour que le signal de sortie s atteigne 95% de sa valeur finale : $s(t_{r5\%}) = 0.95 \text{KE}_0$.

On trouve :
$$t_{r5\%} = (-Ln0,05)T \approx 3T$$

2.2 – Réponse à une rampe

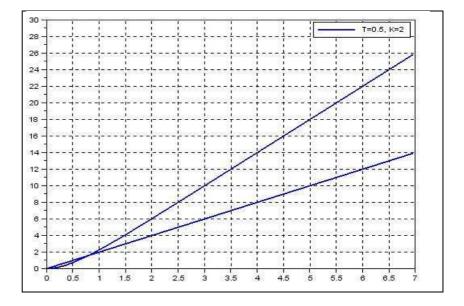
L'entrée e est définie par : e(t) = at .

Expression de S(p)

$$S(p) = \frac{a}{p^2} \frac{K}{1 + Tp}$$

Transformation inverse

$$s(t) = aK \left(t - T + Te^{-\frac{t}{T}} \right)$$



<u>2.3 – Réponse impulsionnelle</u>

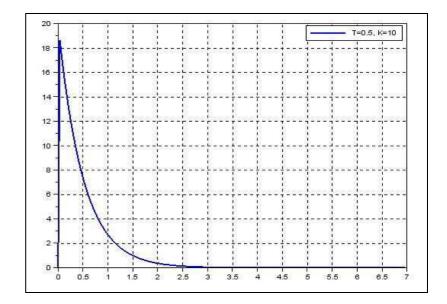
L'entrée e est une impulsion ou un Dirac.

Expression de S(p)

$$S(p) = \frac{K}{1 + Tp}$$

Ttransformation inverse

$$s(t) = \frac{K}{T}e^{-\frac{t}{T}}$$



3 - Étude fréquentielle - Analyse harmonique

3.1 - Fonction de transfert harmonique ou isochrone

En utilisant les notations complexes, la fonction de transfert est : $H(i\omega) = \frac{K}{1 + i\omega T}$

On en déduit :

- le gain (ou rapport d'amplitude) en décibels $G_{dB}(\omega)$: $G_{dB}(\omega) = 20log_{10} \frac{K}{\sqrt{1+\omega^2T^2}}$
- la phase $\varphi(\omega)$: $\varphi(\omega) = -\arctan\omega T$ car $\varphi(\omega) \in \left[-\frac{\pi}{2}, 0 \right]$

3.2 - Pulsation de coupure à 3dB : ω_{3dB} ou ω_{C}

C'est la pulsation à partir de laquelle la réponse harmonique du système est atténuée d'au moins 3dB. À partir de cette pulsation, l'amplitude du signal de sortie est atténuée d'au moins 30% par rapport à l'amplitude obtenue pour de faibles pulsations.

$$\omega_{c} = \omega_{3dB} \approx \frac{1}{T}$$

3.3 - Diagramme de Bode

Tracé asymptotique

	ωT<<1	$\omega = \frac{1}{T}$	ωT>>1							
Η(iω)	H(i ω) = K valable jusqu'à $\omega = \frac{1}{T}$		$H(i\omega) = \frac{K}{i\omega T}$ valable à partir de $\omega = \frac{1}{T}$							
Gain en décibels	20log H(iω) ≈ 20log K	20logK	$20\log H(i\omega) \approx 20\log\frac{K}{\omega T}$							
Phase	Arg H(iω) ≈ 0°	-45°	Arg H(iω) ≈ −90°							

· Tracé des courbes réelles

ω	<u>ω</u> _C 16	<u>ω</u> _C 8	<u>ω_C</u> 4	<u>ω_C</u> 2	ω_{C}	2ω _C	4ω _C	8ω _C	16ω _C
φ(ω)	– 3,5°	– 7°	– 14°	– 26,5°	– 45°	– 63,5°	– 76°	– 83°	– 86,5°
$(G_{dB}(\omega))_{r\acute{e}el} - (G_{dB}(\omega))_{asympt}$ $\approx 0dB$		- 1 dB	- 3 dB	- 1 dB	≈ OdB				

Tracés pour K=10 et T=0,5 s

