

# TRAVAUX PRATIQUES SCIENCES INDUSTRIELLES POUR L'INGENIEUR



| Code TP TYPHOON                                                                                                                   | DC3 Caractériser le mouvement dans un mécanisme | Série 3<br>Activité 1 |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|
| Problématique Comment établir la relation entre les paramètres d'entrée et de sortie du mécanisme de levage du fauteuil Typhoon ? |                                                 | canisme de levage     |

| . robicinatique | du fauteuil Typhoon ?                                                         | <b>.</b> |
|-----------------|-------------------------------------------------------------------------------|----------|
| Système         | TYPHOON                                                                       | ·        |
| <b>E</b>        | Le fauteuil pour handicapés Typhoon de la marque Invacare est un concentré de |          |



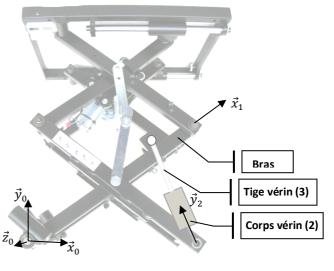
Le fauteuil pour handicapés Typhoon de la marque Invacare est un concentré de technologie sur 6 roues. Le système « Center WheelDrive » assure à l'utilisateur une rotation et une stabilité inégalées quel que soit le terrain. Le principe « Walking Beam » permet le franchissement d'obstacles sans monte-trottoir en toute sécurité.



| Compétences | 3.2 les résultats de la simulation d'une maquette numérique sont correctement exploités |
|-------------|-----------------------------------------------------------------------------------------|
| •           | 2.1 Le protocole est adapté à l'objectif (fiche protocole correctement complétée)       |
|             | 2.2 Le protocole est correctement mis en œuvre                                          |
|             | 8.3 Déterminer les lois entrée-sortie par fermeture géométrique                         |

| Activité 0<br>(commune) (30') | Frontière d'étude et paramétrage                                           |  |
|-------------------------------|----------------------------------------------------------------------------|--|
| Activité 1(1h45)              | Modélisation numérique et simulation de la loi entrée-sortie               |  |
| Activité 2(1h45)              | Mesure expérimentale de la loi entrée-sortie                               |  |
| Activité 3(1h45)              | Modélisation vectorielle et simulation de la loi entrée-sortie avec python |  |

### Activité 0 (commune)(30')


#### Frontière d'étude et paramétrage

#### **Documents**

- Mise en service du système
  - document: A0\_DR1\_Fauteuil

#### Contexte





#### paramétrage

 $R_0$   $(0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$  le repère associé au bâti

 $l(t) = \lambda_0 + \lambda(t)$ 

 $\overrightarrow{GB} = L.\vec{x}_1$ 

 $\overrightarrow{GC} = L.\vec{x}_4$ 

 $\overrightarrow{HB} = \frac{L}{2} \cdot \vec{x}_1$ 

- $R_1$   $(0, \vec{x}_1, \vec{y}_1, \vec{z}_1)$  le repère associé au bras 1
- $R_3$   $(H, \vec{x}_3, \vec{y}_3, \vec{z}_3)$  le repère associé à la tige du vérin
- h(t) la hauteur réglable d'assise
- λ(t) la course du vérin

#### Questions

- Q1 Observer le fonctionnement du système et, en fonction de la frontière d'étude définie, décrire :
  - Le mouvement du composant en entrée du système et la nature du paramètre correspondant.
  - Le mouvement du composant en sortie du système et la nature du paramètre correspondant.
- Q2 Renseigner les différents repères sur le schéma cinématique et compléter les figures de changement de base (en respectant les codes couleurs).

 $\lambda_0 = 67 \ mm$ 

#### **Paramétrage**

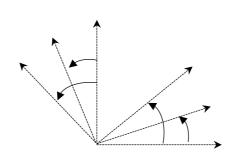
Bras 4

#### Caractéristiques dimensionnelles

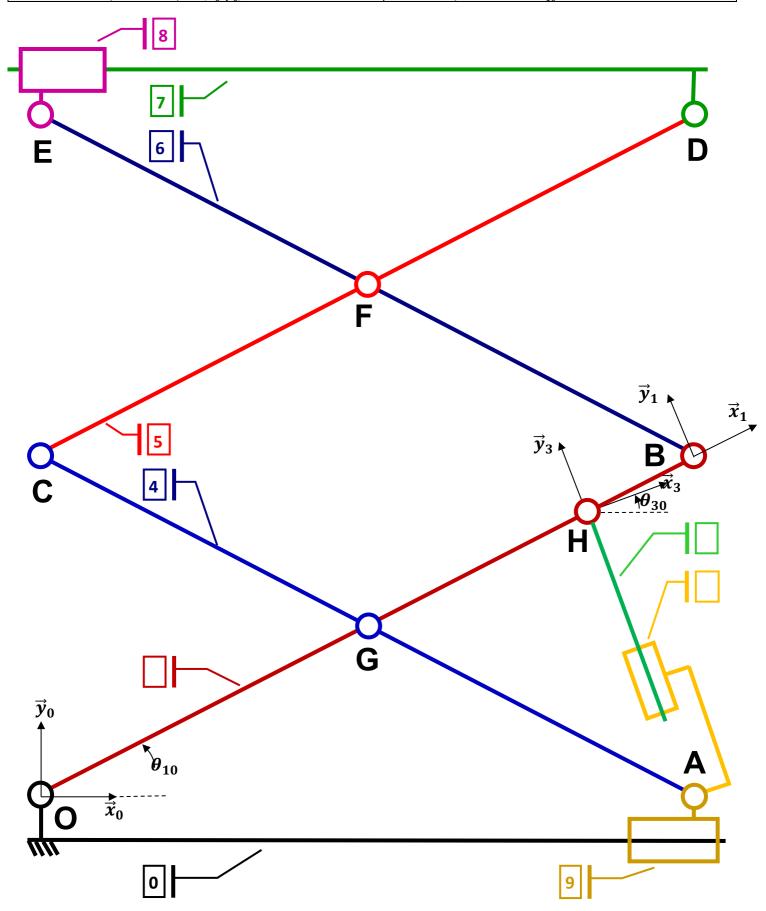
Vérin 
$$\overrightarrow{AH} = l(t) \cdot \vec{y}_3$$
  
Bras 1  $\overrightarrow{OG} = L \cdot \vec{x}_1$ 

$$\overrightarrow{OG} = L.\vec{x}_1$$

$$\overrightarrow{AG} = L.\vec{x}_4$$


Fauteuil 7 
$$\overrightarrow{AD} = h(t) \cdot \vec{y}_0$$

$$\overrightarrow{AB} = \frac{h(t)}{2} \cdot \overrightarrow{y}_0$$


L = 195 mmposition haute  $\theta_{10} = 27.5^{\circ}$ 

Données (Modèle Inventor)

#### Figures de changement de base



| Document A0_DR1_Fauteuil |                                               |               |                                              |  |  |  |
|--------------------------|-----------------------------------------------|---------------|----------------------------------------------|--|--|--|
|                          | nom du composant                              | mouvement /0  | Paramètre ( $\lambda_{ij}$ , $\theta_{ij}$ ) |  |  |  |
| entrée                   |                                               |               |                                              |  |  |  |
| sortie                   |                                               |               |                                              |  |  |  |
| Schéma ciné              | matique minimal plan $(\vec{x}_0, \vec{y}_0)$ | Echelle 1:2 p | osition haute $\theta_{10} = 27.5^{\circ}$   |  |  |  |



## Activité 1(1h45)

|                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                      |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--|--|--|
| Responsabilité | Vous devez compléter la maquette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | numérique et simuler la loi d'entrée-s | ortie                |  |  |  |
| Documents      | Vidéos d'aide à l'utilisation du logiciel de CAO INVENTOR : <a href="https://youtu.be/Inwh_wZff0A">https://youtu.be/Inwh_wZff0A</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                      |  |  |  |
|                | Les fichiers numériques sont dans le répertoire « Fauteuil LIFT » présents dans :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                      |  |  |  |
|                | Ressources X / Ressources CPGE / TSI 1 / SI / série 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                      |  |  |  |
| Contexte       | Objectifs de modélisation : avoir une maitrise suffisante pour réaliser une simulation dynamique.  L'architecture du Fauteuil LIFT étant proposée, vous devez vérifier certaines données géométriques et cinématiques du cahier des charges partiel suivant :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                      |  |  |  |
|                | Exigence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Critère                                | Niveau / Flexibilité |  |  |  |
|                | Déplacer l'assise du fauteuil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Course                                 | 300 mm maximum       |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vitesse de déplacement                 | 1,3 m/s maxi         |  |  |  |
|                | <ul> <li>Q1 Ouvrir le fichier Fauteuil TSI TP3.iam. Lancer le module de « simulation dynamique ». Des liaisons so créées automatiquement. Vérifier leur concordance avec celles définies dans le schéma cinématique Modifier les si nécessaire.</li> <li>On souhaite connaître le déplacement vertical h(t) du fauteuil en fonction de la course du vérin λ(t).</li> <li>Q2 Quelle liaison présente dans le modèle doit piloter le reste du système pour répondre à cette exigence ?</li> <li>Q3 Ouvrir les « propriétés » de cette liaison. Dans le degré de liberté disponible, modifier le mouvement imporen l'activant. Compléter les paramètres de l'entraînement en position avec une course du vérin égale à 15 mm.</li> <li>Q4 Lancer la simulation, observer les mouvements des pièces.</li> <li>Q5 A partir du « graphique de sortie », tracer la courbe du déplacement vertical du fauteuil h(t) en fonction de course du vérin λ(t): h<sub>simul</sub> = f(λ<sub>simul</sub>).</li> <li>Q6 Proposer une linéarisation de la loi entrée-sortie sous la forme : h<sub>simul</sub> = a.λ<sub>simul</sub>+b.</li> <li>Q7 Valider le critère de « Course » de l'exigence « Déplacer l'assise du fauteuil » du cahier des charges.</li> </ul> |                                        |                      |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                      |  |  |  |