

TRAVAUX PRATIQUES SCIENCES INDUSTRIELLES POUR L'INGENIEUR

Code TP COMAX

DC4 Choisir un actionneur et sa commande

Série 5
Activité 3

Problématique

Quel est le temps de réponse d'un actionneur du type machine à courant continu ?

Présentation

Le robot **Comax** est un robot collaboratif. Il fait partie de la famille des COBOT, robots dont la fonction est d'assister l'opérateur dans des opérations de déplacement d'objets de poids élevé.

Le **Comax** fait l'acquisition de l'intention de l'opérateur par un capteur d'effort. Cette information est traîtée au travers d'un algorithme complexe afin de piloter un moteur à courant continu pour assister l'opérateur dans l'effort développé.

Compétences

- 3.3 Le modèle Matlab-simulink est correctement renseigné (les paramètres sont identifiés).
- 3.4 Les résultats de la simulation Matlab-simulink sont correctement exploités
- 4.4 La mesure des écarts est explicitée et justifiée
- 9.3 Déterminer les paramètres d'une machine à courant continu

Activité 0	Activité commune de recherche des paramètres constructeurs	
Activité 1	é 1 détermination expérimentale de la constante de couplage électromagnétique	
Activité 2	détermination des paramètres électriques	
Activité 3	modélisation électromécanique et simulation du temps de réponse	

Activité 0

Découverte du système

Questions

Q1 Décrire sur le document réponse Comax_A0_DR1 la chaîne puissance.

fonction ALIMENTER: caractériser le réseau d'alimentation électrique.

fonction MODULER: Donner les limites des grandeurs caractéristiques de la carte de contrôle de puissance. fonction CONVERTIR: Donner la technologie du convertisseur électromécanique, et ses principales caractéristiques (Tension, courant, puissance).

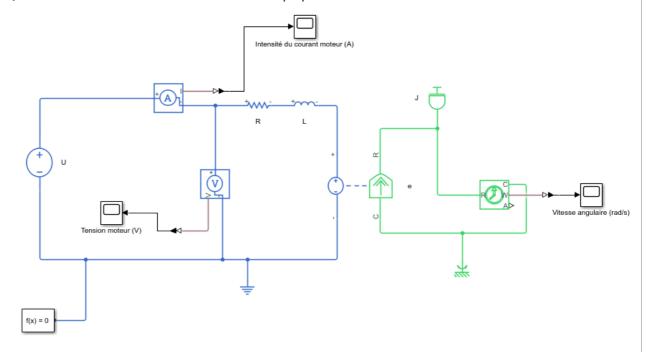
fonction TRANSMETTRE : Citer les différents éléments de la chaîne de transmission entre l'actionneur et le bras du comax.

→Auto-Évaluation compétence 1.5

Q2 Compléter le document réponse **Comax_A0_DR2** à partir du document constructeur Maxon, en réécrivant les valeurs dans le système international.

Activité 3

Responsabilité Modélisation et simulation du temps de réponse.			
Documents	Logiciel	MATLAB 2017A	


Documents	Logicici	WATERD 2017A	
	Tutoriel	Videos MATLAB/Simulink sur Youtube	
	Fichier MATLAB	Ressources CPGE/ SI / TSI/	
Contexte	Pour simuler le comportement temporel de la machine à courant continu Maxon, vous utiliserez le logiciel MATLAB-		
	Simulink.		
	Le modèle est simple à établir et consiste	e à relier les composants du modèle. La simulation permettra de déterminer	

Questions

Regarder <u>la première vidéo</u> disponible sur fltsi.fr.

le temps de réponse du moteur à courant continu.

- Q1 Ouvrir le fichier TP4_A3.slx avec MATLAB2017A.
- Q2 Tracer le modèle du moteur à courant continu proposé ci-dessous.

Q3 Compléter le modèle de la machine à courant continu Maxon à l'aide des différents paramètres constructeur du document réponse Comax_A0_DR2 de l'activité 0.

Regarder <u>la seconde vidéo</u> disponible sur fltsi.fr.

- ${\bf Q4}~{\rm Simuler}$ un essai de montée en vitesse avec un échelon de tension d'alimentation $U_0=20~{\rm V}.$
- **Q5** Afficher l'évolution de la vitesse angulaire $\Omega_{(t)}$ du moteur en fonction du temps. Auto-Évaluation de compétences : 3.1, 3.2 et 3.3.
- **Q6** Déterminer <u>le temps de réponse</u> du moteur ainsi simulé : $T_{constructeur}$ en s.
- Q7 Compléter le modèle de la machine à courant continu Maxon à l'aide des différents déterminés dans les activités 1 et 2 : k, R et L.
- **Q8** Simuler un essai de montée en vitesse avec un échelon de tension d'alimentation $U_0=20~{\rm V}.$
- **Q9** Déterminer <u>le temps de réponse</u> du moteur ainsi simulé : $T_{identifié}$ en s.
- **Q10** Comparer les valeurs de $T_{constructeur}$ et $T_{identifié}$ en s.
- Q11 Conclure sur les écarts.