

TRAVAUX PRATIQUES SCIENCES INDUSTRIELLES POUR L'INGENIEUR

Code

CONTROL'X

DC4 Choisir un actionneur et sa commande

Série 5 Activité 1

Problématique

Quel est le temps de réponse d'un actionneur du type machine à courant continu ?

Système

CONTROL'X

Le système industriel duquel est extrait Control'X est un robot portique 3 axes Lexium Max R du constructeur Schneider Electric.

Ce robot portique permet d'apporter une solution fiable pour la manipulation de charges sur de longues distances : selon le modèle, des charges jusqu'à 50 kg peuvent être déplacées jusqu'à 5500 mm en X, 1500 mm en Y et 1200 mm en Z..

Ces robots portiques, commercialisés préassemblés, offrent différentes options de configuration pour chaque axe dont la longueur, le choix entre différentes tailles et types de profilés, le choix entre différents types de guidages ...

Compétences

- 1.5 La recherche d'informations dans les documents techniques est bien conduite
- 2.4 Les courbes obtenues sont bien renseignées (titre, échelles, axes, couleurs...)
- 2.5 Les résultats de l'expérimentation sont correctement exploités
- 2.6 La mise en oeuvre d'un oscilloscope est maitrisée
- 9.3 Déterminer les paramètres d'une machine à courant continu

Activité 0	Activité commune de recherche des paramètres constructeurs
Activité 1	détermination expérimentale de la constante de couplage électromagnétique.
Activité 2	détermination des paramètres électriques.
Activité 3	modélisation électromécanique et simulation du temps de réponse.

Activité 0

Découverte du système

Questions

Q1 Décrire sur le document réponse ControlX_A0_DR1 la chaîne puissance.

fonction ALIMENTER : caractériser le réseau d'alimentation électrique.

fonction MODULER: Donner les limites des grandeurs caractéristiques de la carte de contrôle de puissance. fonction CONVERTIR: Donner la technologie du convertisseur électromécanique, et ses principales caractéristiques (Tension, courant, puissance).

fonction TRANSMETTRE : Citer les différents éléments de la chaîne de transmission.

→Auto-Évaluation compétence 1.5

Q2 Compléter le document réponse **ControlX_A0_DR2** à partir du document constructeur, en réécrivant les valeurs dans le système international.

Activité 1

Responsabilité	Détermination expérimentale du temps de réponse de l'actionneur		
Documents	fiche outil	comportement temporel de la mcc	
	 fiche outil 	Identification de Tem par un essai en vitesse	
	 Document 	ControlX_A1_DR1	
	réponse	ControlX_A1_DR2	
	 Document 		
	réponse		
Mesure de la co	nstante de couplage électro	magnétique	
contexte	la constante de couplage électromagnétique k est un paramètre qui lie les grandeurs électriques et les		
	grandeurs mécaniques au niveau de l'entrefer de la machine (d'où son nom « électromagnétique »).		
	C'est un paramètre important de la machine à courant continu et vous vérifiez dans cette activité sa valeur.		
Questions	Q3 Montrer à partir du modèle électrique de la machine à courant continu comment il est possible de mesurer		
	la valeur de la constante de couplage en entrainant la machine hors tension.		
	Q4 Proposer un protocole de mesure de la constante k de l'actionneur.		
	→ Évaluation compétence 2.1, appeler le professeur pour valider votre protocole		
	Q5 Mettre en œuvre ce protocole et proposer une valeur de k.		
	Q6 Comparer avec la valeur constructeur.		
Tracé de la mon	tée en vitesse sur un échelo	n de tension (en commun avec l'activité A2)	
documents	 fichier calcul 	controlX_A1_CALC	
Questions	Q7 En complétant le fichie	er controlX_A1_CALC avec les valeurs mesurées des paramètres, tracer l'allure de	
	la réponse temporelle $oldsymbol{\Omega}_{(t)}$ à un échelon de tension $oldsymbol{U_o}$ (récupérer la valeur dans l'activité A3).		
		e réponse du moteur: T _{A1} en s.	